MADRaS : Multi Agent Driving Simulator

نویسندگان

چکیده

Autonomous driving has emerged as one of the most active areas research it promise making transportation safer and more efficient than ever before. Most real-world autonomous pipelines perform perception, motion planning action in a loop. In this work we present MADRaS, an open-source multi-agent simulator for use design evaluation algorithms driving. Given start goal state, task is to solve sequence position, orientation speed values order navigate between states while adhering safety constraints. These constraints often involve behaviors other agents environment. MADRaS provides platform constructing wide variety highway track scenarios where multiple can be trained tasks using reinforcement learning machine algorithms. built on TORCS, car-racing simulator. TORCS offers cars with different dynamic properties tracks geometries surface. inherits these functionalities from introduces support training, inter-vehicular communication, noisy observations, stochastic actions, custom traffic whose programmed simulate challenging conditions encountered real world. used create complexities tuned along eight axes well-defined steps. This makes particularly suited curriculum continual learning. lightweight convenient OpenAI Gym interface independent control each car. Apart primitive steering-acceleration-brake mode hierarchical track-position – that potentially achieve better generalization. uses UDP based client server model simulation engine agent. multiprocessing run agent parallel process efficiency integrates well popular libraries like RLLib. We show experiments single without

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Survivability Simulator for Multi-agent Adaptive Coordination

Keywords: Multi-agent systems, discrete simulation, simulator The growth of a distributed processing system can increase both the number and likelihood of attacks it may be subject to over its lifetime 14, 7]. This fact, in addition to the complexity inherent in such an environment, makes the survivability of large heterogeneous systems one of the most challenging research areas currently being...

متن کامل

Multi-Agent Imitation Learning for Driving Simulation

Simulation is an appealing option for validating the safety of autonomous vehicles. Generative Adversarial Imitation Learning (GAIL) has recently been shown to learn representative human driver models. These human driver models were learned through training in single-agent environments, but they have difficulty in generalizing to multi-agent driving scenarios. We argue these difficulties arise ...

متن کامل

مدلسازی احساسات در سیستمهای multi-agent یادگیرنده

این پایان نامه به بررسی نقش مثبت یا منفی احساسات روی کارایی عامل های یادگیرنده در یک محیط multi-agent می پردازد. در این راستا مدلی برای عامل های یادگیرنده دارای احساس معرفی می شود. برای بررسی نقش احساسات، یک محیط فرضی multi-agent شبیه سازی شده و حالت های گوناگونی در آن نظر گرفته می شوند. در حالت نخست، کارایی عامل هایی بررسی می شود که دارای احساس نیستند و فقط قابلیت یادگیری دارند. در دومین حالت...

15 صفحه اول

Learning a Driving Simulator

comma.ai’s approach to Artificial Intelligence for self-driving cars1 is based on an agent that learns to clone driver behaviors and plans maneuvers by simulating future events in the road. This paper illustrates one of our research approaches for driving simulation. One where we learn to simulate. Here we investigate variational autoencoders with classical and learned cost functions using gene...

متن کامل

Survey the effect of texting on driving performances using drivers driving a Simulator

Introduction: There is evidence that driver distraction is one of the major causes of vehicle accidents. One of the key factors that can affect people's driving performance drastically, is texting. Therefore, the purpose of this study is to determine the effects of texting on driving functions using a driving simulator. Methods and Materials: This study was conducted on 80 students ranging fro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Artificial Intelligence Research

سال: 2021

ISSN: ['1076-9757', '1943-5037']

DOI: https://doi.org/10.1613/jair.1.12531